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Abstract

This paper contains a reformulation of the kinetic equations that describe transport
in a chromatographic column, to allow the possibility of describing adsorption at
different types of sites. It is shown that in place of the partial differential equation

dc 92¢ dc
S D —y (*)
ot ax? dx

that is the usual starting point for any analysis, one obtains a partial integro-
differential equation. While only a formal solution to this equation is possible, the
central limit theorem of probability gnarantees that in a wide variety of cases the
solution for an isolated peak will approach the Gaussian form, so that (¥*) is
applicable. Next the conditions necessary to insure the appearance of tailing or
permanent asymmetry in an isolated peak are considered. Two models that lead to
tailing are considered. In the first there is a single adsorption phase, but the residence
time distribution has an infinite variance. The second consists of a random
distribution of first-order rate constants.

INTRODUCTION

Giddings and Eyring appear to have been the first to develop a stochastic
or microscopic model for the kinetics of chromatrography (/), in contrast to a
macroscopic model phrased in terms of a partial differential equation. They

1609
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were interested in the elution profile for a column in which a molecule could
be in one of two states: mobile or stationary with first-order kinetics
describing the interchange between states. They showed that after a sufficient
number of interchanges between the two states takes place, the elution profile
becomes essentially a Gaussian when the initial loading is a pulse. They also
considered a generalization in which two types of adsorption sites are
allowed. This generalization is of interest as it has been proposed as a
mechanism for producing tailing (2), i.e., when the two adsorption site types
have very different desorption rates. It should be pointed out, however, that
asymmetry produced in this way is necessarily transient in consequence of
the central limit theorem of probability. Van Holde also discussed a two-state
model in which there is no strictly adsorbed state but in which the speed in
the two states is different{3). From the beginning of these investigations, the
generalization to a system with a single mobile state and n types of
adsorption states has suggested itself. Symbolically the system can be
represented as
25
M =35, (1)
XS,

This system with n = 2 was originally analyzed by Giddings and Eyring (1)
as well as by Beynon et al. (4) and McQuarrie (5). The monograph by
Giddings contains a formal analysis of systems which may be more
complicated than the scheme of Eq. (1) (6). However, that analysis makes
use of a quasi-equilibrium assumption and does not give a full kinetic
treatment,

In this paper I will make use of some recent developments in solid-state
physics to develop transport equations for chromatographic systems starting
from models on a microscopic level (7-11). A quantitative, if crude, measure
of tailing will be introduced and evaluated for a variety of linear models, of
which the scheme of Eq. (1) is typical. I will show that at sufficiently long
times the asymmetry in a peak resulting from Eq. (1) must tend to zero. This
is otherwise obvious since the central limit theorem of probability guarantees
that an isolated peak will approach the Gaussian form at sufficiently long
times (12). It should be noted, parenthetically, that this does not rule out
transient tailing and is not, therefore, inconsistent with the suggestion of
Keller and Giddings (2). It does say that in an infinitely long column all
peaks based on the model of Eq. (1) will tend to the Gaussian. Two linear
models will be described in the present paper that lead to peak asymmetry
that increases with time. The first of these is that of a system with a single
stationary or adsorption state in which the desorption kinetics reflect more
complicated processes than can be described by a first-order reaction. The
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second is one in which the transitions between the mobile and adsorbed
phases is assumed to be first order, but the rate constants for each transition
are assumed to be randomly distributed. These models are only suggested as
possibilities, and there may be many other possible linear models that will
exhibit tailing. The possibility of tailing due to nonlinear isotherms (cf., for
example, Ref. 13) will not be explored in this article. As a by-product of this
investigation, I will derive a more general transport equation than has so far
appeared in the literature of chromatographic processes.

FUNDAMENTAL EQUATIONS

In what follows I will consider the development of a concentration profile
in the absence of boundaries. The observable concentration at x at time ¢ will
be denoted by p(x, ?). If there are n types of adsorbed states, as in Eq. (1),
then p(x, ¢} is the sum of concentrations in the mobile and adsorbed phases.
Let c(x, r) be the concentration at x of mobile molecules, and let ¢,(x, ¢) be the
corresponding concentration in adsorbed phase i. By conservation of mass,
one can write

p(x, £) = c(x, t) + Zefx, 1) (2)

For simplicity I consider only the case of a column with spatially uniform
properties. Let the matrix be characterized by a diffusion constant D, and
assume that in the absence of a diffusive mechanism, molecules move
through the column at speed ». The transport equation resulting from these
assumptions is

op b 0%c _oc 3)
ot oxt  ° ox

To complete this set of equations we must describe kinetics of the transition
between the mobile and adsorbed phases. If k; denotes the first-order rate
constants for the transition M—S; and k; denotes the rate constants for the
reverse reaction, then we have

dc;/dt = ke — ki, i=1,2,...,n 4)

More complicated schemes for modeling these transitions will be discussed
later. Equations (2)-(4) constitute one formulation of the generalized
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transport equations. It is not yet the most convenient starting point since the
observable concentration is p(x, f), and it is therefore desireable to have a
single equation for this quantity and no other, We will carry out the relevant
transformation in a later paragraph, after discussing a more general
description of transitions between the mobile and adsorbed phases.

Let us suppose that the transition S;—M consists of several intermediate
steps, or more generally that one a molecule is in S; the desorption time is a
random variable. Let the probability density for this random time be denoted
by ¥(f). When first-order kinetics apply, ¥{¢) necessarily has the form

Y1) = ki exp (—kit) (5)

Other more detailed pictures of the transition that involve intermediates lead
to more complicated forms for ¥(¢). However, let us simply retain y(¢) in
general form without immediately specifying its properties. For simplicity 1
will retain the assumption that the adsorption event M— §; can be described
by first-order kinetics, although it is not' difficult to generalize this
assumption. When a general form for ¥,(f) is retained, Eq. (4) is to be
replaced by

_0¢;
ot

=kie(x, t) — k,-ftc(x, )it — t) dt (6)
0

To see this we note that the rate of change of the concentration in S; at time ¢
is due either to influx from the mobile phase or due to molecules that entered
S; at time 7 and remained for a time ¢ — 7 before desorbing, It can be verified
that in the special case when Eq. (5) is substituted into Eq. (6), one finds Eq.
(4). Equations (2) and (3) remain valid whatever the form of y(¢).

Since p(x, ¢) is the measureable concentration, it is convenient to have a
single equation in terms of this function. To derive this equation, we
introduce Laplace transforms with respect to t:

p*(x, s) = ‘/O‘wp(x, t) exp(—st)dt
c¥(x, s) = ‘/‘wci(x, t) exp(--st) dt (7)
0
)= [ e (=50

The Laplace transform of Eq. (6) is

cF(x, 5) = -~ks-"—(1 — PE() K, $) (8)
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so that the ¢¥(x, s) can all be expressed in terms of ¢*(x, s). The transform
c*(x, ) can be expressed in terms of p*(x, ) by taking the transform of Eq.
(2) and making use of Eq. (8). In this way we find that

c*(x, 5) = Q*(s)p*(x, s) (9)
where

-1

0*(s) = [1 +1% k0 - w,*(s))] (10)

The inverse transform of this function will be denoted by Q(¢). Equation (9)
is then equivalent to

clx, )= f’p(x, 7)Q(t — 1) dr (11)

by the convolution property of the Laplace transform. Hence the general
form of the transport equation based on our microscopic model is

¢ 2
ﬂ=fQ(:—r)[D TenT _, o (x.r)] dr (12)
ot 0 ox? ox

Both the Giddings-Eyring and van Holde models assume that diffusion in
the mobile phases is negligible, and set D = 0. In the former of these models
there is only a single mobile phase, and the resulting form of Q*(s) is

k =1
co-()"

The inverse transform, Q(¢), is
O() =68(t) — kexp(—(k+ k')) (14)

where 6(?) is the Dirac delta function. Consequently, Eq. (12) is, in detail,

0 0 ! : dp(x,
_p._, + v p = ka e—(k+k )([_T)__M dx (15)
ot ox 0 dx

By differentiation with respect to ¢, this can also be transformed into the
partial differential equation
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0%p 0°p op op
+ +(k+ & +k =0 (
a7V axar ¢ Y " ox (16)

which is certainly a more complicated kinetic equation than one is
accustomed to seeing in the context of chromatography. Nonetheless,
probabilistic limit laws allow us to conclude that the Gaussian peak is
reached as a limit of the solution (12). It should also be noted that when
diffusion is negligible, one can solve the elution problem rather simply, since
in this case the amount of molecules remaining in the column is

R(1) = j;Lp(x, t) dx (17)

where L is the length of the column.

EVALUATION OF MOMENTS

So far [ have presented a formal theory. In general the theory, depending
as it does on the function Q(¢) which is hard to evaluate in detail, cannot be
solved in complete generality. Nevertheless, useful information can be
obtained from relatively simple properties of Q(¢) that are readily calculable.
In particular, this information resides in the moments of the observed
concentration. Although p(x, ) is not itself a probability density, the
equivalent function

p(x, t)/ j;wp(x, 0) dx

can be so identified, since it is nonnegative, and normalized to 1, as can be
verified by integrating Eq. (12) over all x. An analysis of the moments will
enable us to study the spreading of an isolated peak as well as providing a
measure of the asymmetry of the peak as a function of time. For simplicity I
will consider only the case of pulse loading so that p(x, 0) = p,d(x), and also
assume that D = 0 so that diffusive transfer in the mobile phase is negligible.
A more general theory can be developed but the essential qualitative features
are to be found in the simpler theory.
The Laplace transform of Eq. (12) is, when ) = 0,

dp*
sp*(x, 5) T+ vQ*(s) 3

= pod(x) (18)
X

which is easily solved. The solution is
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1 sX
—exp |\ m————— |, x=0
p*(x, 5) vQ*(s) vQ*(s) (19)
Po 0, x<0
from which the normalization property is readily inferred. Another quantity
that can be found from Eq. (19) is the Laplace transform of the amount of
retained molecules at time ¢. Equation (19) implies the resuit

Ry =2 [ 1= e (-2 | 20)

Both Egs. (19) and (20) can be inverted exactly to yield p(x, f) and R(¢) for
the Giddings-Eyring model, but such an inversion is not generally possible in
any more complicated cases. It is therefore reasonable to seek measures of
useful information about the peak that do not depend on an exact inversion.
Such a measure is provided by the spatial moments 7,(¢) defined by

() = fo “x"o(x, 1) dx/pg @1)

The Laplace transform of these moments can be calculated from Eq. (19),
and is found to be

!

rE(s) = sfﬂ (1Q*(s))" (22)

exactly.

Since the inversion of Q¥(s) is not readily accomplished, it would be
impossible to give a complete transient analysis of the r,(f) without resort to
numerical inversion of the Laplace transforms (14). Nonetheless Eq. (22) can
yield useful information on the behavior of the r,(¢) at sufficiently long times.
To see what is involved, consider the Giddings-Eyring model for which
results can be calculated exactly. The mean peak position and the variance of
the peak can be written in terms of g(£) = 1 — exp (—(k + k')t) as

vk’ vk
t+
k+k (k+ k'

r(t) = 2 g(1)

4kk’' t 2kk't
o) = 1) = ri(e) = (r— g )—

(k+k')? K+ o+ ry &Y
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2 2

+ —m—wm — (k + Kk'yte kKD — g1 (23)

In the limit (k + &'}t 2> 1, most terms in these expressions can be neglected
and we find the simpler long-time results:

vk't 20%kk't
n)~——————, oO~——FT 5
(k+ k") (k+ k")

(24)
The limit just stated, (k + k')t > 1, can be given a physical interpretation. It
says that the time must be large enough to insure that the number of
interchanges between mobile and adsorbed phases is much greater than
unity. When this condition holds, the methods of renewal theory can be used
to show that in the stated limit peak shape will be very close to Gaussian
(15).

In the case of multisite adsorption with a finite number of site types, it
would be extremely difficult to write down the analogue of Eq. (23) valid for
all time, but it is possible rather directly to calculate the analogue of Eq. (24),
the long time limit. It is somewhat more difficult to specify the time at which
the Gaussian peak becomes a useful approximation, but we can approach
this problem by calculating a function that measures the skewness of the
distribution. This measure of asymmetry is used in statistics (16), and will be
denoted by ¥(¢). In our present notation it can be written

(1) = (r3(1) = 3ri()r(1) + 2r1(1)/ (2) (25)

This quantity is exactly equal to zero for any symmetric peak and in
particular for a Gaussian. The fundamental idea in what follows is to
calculate the long time behavior of r(f) from the small |s| behavior of the
r¥(s) (17). In this way I will show that at sufficiently long times, y(f) goes like
(T/f)'?, where T is a constant with the dimensions of time that can be
calculated in terms of the rate constants.

For the analysis one can assume that when |s| is small, Q%¥(s) can be
expanded as

Q*(s) ~ Qo + Q15 + st2 + - (26)
where the Q; are constants to be calculated from Eq. (10). When there are n

first-order reactions as in Eq. (1), the Qs can be expressed in terms of
quantities
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=2 ky(ky*! (27)
J r =
where I; has the dimensions of (timeY. The first four of the Q; are:

0, =1/(1 +Ty)
0, = Qir, (28)
0, = Q3T — QT,
Qs = Q¢I} — 2Q4T\ I, + QT
The next step in the analysis is to substitute Eq. (26) into the expression for
r¥(s) in Eq. (22) and collect terms like s, m=1, 2, 3,..., which

correspond to terms £™'/(m — 1)! in the long-time expansion of the 7,(¢). In
this way we find

ri(8) ~ v(Qot + Oy)
ra(t) ~ v*( Q51 + 4Qo 01t + 2[2Q0Q; + 0] (29)
ry(1) ~ (@5 + 9050, + 18(Q0 01 + Q3 Q)¢

+6(01 +3050; +6000:0,))

We find, by using these expressions, that the variance associated with the
peak is

a*(1) ~ 2000, vt (30)
and the long-time form for the skewness defined in Eq. (25) is
(01 + 000y)
Y8~ /> 0Y2Q¥241 12 (31)

which tends to zero as ¢ increases indefinitely. Thus the shape of the peak
approaches symmetry so that for the present model tailing is a transient
phenomena. A mathematical argument based on the central limit theorem
suffices to show that the resulting peak must in fact be Gaussian.

KINETIC REQUIREMENTS FOR TAILING

It has been shown that a distribution of a finite number of rate constants
necessarily leads to the absence of tailing in the long-time limit, although the
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argument does not rule out transient asymmetry. Is there any model that
leads to tailing that does not vanish as time increases? I will construct two
models that have that property. Probably there are others.

The motivation for the first model starts from the observation that it is no
more than assumption that the kinetics of transitions between mobile and
adsorbed phases can be described as being first order. Actual transitions may
be much more complicated due to steric factors and to intermediate steps in
the transition. Let us therefore consider a simple model with a single type of
adsorbing site. Let us further retain the assumption that the transition M—S
follows first-order kinetics. The reverse transition S—M will be assumed to
reflect in its Kinetics the different factors mentioned above. Because of these
factors we will make the assumption that once adsorbed, a molecule can
remain adsorbed for a long period. This property will be translated into an
assumption about the long-time behavior of ¥(f). When kinetics are first
order Y(f) = k' exp (—k't), and

—1

s © st
*¥(s)= {1 +—) = —1)" 32
Y*(s) ( " T (32)

i.e., ¥*(s) has a Taylor series around s = 0 which is equivalent to saying that
all moments of residence in the adsorbed phase are finite. In the present
model we will assume that y*(s) can be expanded around s = 0 as

yR(s)=1—ps +as®+ - - (33)

in which 1 < a <2, and p and a are constants. The constant u is just the
average residence time for a single sojourn in the adsorbed phase. Equation
(33) implies that the second moment, or variance of this residence time, is
infinite although the average is finite. An example of a residence density with
these properties is

3 172
o= () o= 4)

The corresponding transform is

P*(s) = (1 + v/ 2us) exp(—V 2ps)

3

~1—ps+ (35)
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which is of the form shown in Eq. (33), with a = 3/2.
When Eq. (33) holds, g*(s) can be expanded as

Q¥s)= Qo+ Qus* ' + -+ - (36)
where
Q=01+kw™"', Qi =kaQj (37)

The combination of Eqs. (22) and (36) implies that at sufficiently large
times, the moments of the peak take the form

2—a
rl(t)~z/(Q0t+——Q—lt—+ )

I'(3 —a)
~ 2 2.2 4_Q0Q___1t3_a .. )
ry(t) ~v (Qot + T4 —a) + (38)
~ 3 3,3 18Q5Q____1t4_°‘ .. )
ry(t) ~v (Qot + TG — ) +

Thus at sufficiently long times [more precisely, when (Qy/Q;)f*™! > 1], the
average peak position will appear to increase linearly with time. However,
the variance of the peak can be expressed in this approximation as

_ 2a—1) i
ey 20 (39)

(1)
When « = 2, this reduces to the classical first-power dependence of the
variance. Whenever the parameter « is less than 2 as is presently assumed,
the variance grows at a faster rate than ¢. The expressions in Eq. (38) can
also be used to calculate the skewness parameter defined in Eq. (25). In the
present case the asymptotic result is

3 I'4 — a 72 (a0 —2
()~ <3 ( S ) @2 e 40
2 20, (a—1) (4 —a)
to lowest order in ¢. Several features of this formula are of interest. First, the
peak is skewed to the left because of the restriction that a < 2. Second, as
time increases the skewness increases, and finally, as @ — 1, the skewness
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also increases. These qualitative properties are related to the infinite
variance of the residence times that is a consequence of the assumption of
Eq. (33).

The results just described are derived for a single site model in which the
residence times in the adsorbed phase have a finite mean but an infinite
variance, and in which the Laplace transform of the residence time density
has the property shown in Eq. (33). Similar results are obtainable from a
model in which there are a multiplicity of sites with first-order kinetics (Eq.
1), but in which the rate constants are assumed to be randomly distributed.
To derive the relevant relations, one starts by assuming a joint density for the
forward and backward rate constants, p(k, k£'). That is to say, p(k, k') dk dk’'
is the probability that a forward (first-order) rate constant is between £ and
k + dk, and a backward rate constant is between k' and k' + dk’. The
continuous analogue of Eq. (9) with the assumption of random rate constants
is

kp(k, k'
cFelx, 5) = ——E(T;gf)——c*(x, 5) (41)

which implies that the function Q*(s) appearing in Eq. (10) is

-1
Q*(s)=(1+£mf kp(ji:)dkdk> (42)
S 14

The properties of O*(s) for s —~0 will therefore depend on those of the double

integral
kp(k, k'
U(s)—f f KK KD ke are (43)
s+ Kk

Let me begin by assuming that U(0) is finite. It is just

v = [ [k mrakar= (=Y @

i.e., it is equal to the average equilibrium constant which will be assumed to
be finite. It is convenient to define the integral

Ay = ﬂwkp(k, k'Y dk (45)
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so that

= Ak dK I Aus)
o K(st+ k) O u(u+1)

U(s) — U(0) = —s du  (46)

in which the second form of the integral follows from the first by the change
of variables k' = su. We observe that when |s| is small, the behavior of the
integral depends on the behavior of k') near the origin in k', since 1/&’
diverges there. One can rcover an expansion equivalent to that in Eq. (33) by
assuming that near k' = 0, k') behaves like k') ~ A(k')?, where 0 < g < 1
and A is a constant. Then it follows from an Abelian theorem for Laplace
transforms (17) that

= uf~tduy A
U(s) — U(0) ~ —Asﬂf =— sP(47)
0

1+u sin (7f3)

for s ~ 0. Together with Eqs. (42) and (43), this result is exacly of the form
of Eq. (36). We therefore see that the assumption of random rate constants
together with a more specialized assumption on the density at long residence
times (kK" ~ 0) will produce tailing. No doubt one can find other forms of
tailing behavior by varying the form of k) or by assuming that residence in
the mobile or stationary phases do not necessarily follow first-order kinetics.
It is also clear that the equations that follow from a microscopic description
of the chromatographic process are generally more complicated than the
transport equation usually assumed to hold. However, the limit theorems of
probability suffice to insure that the usually assumed transport equation is
valid under a wide variety of circumstances. Finally, it is possible to
generalize the equations developed here so as to include gradients and other
inhomogeneities. However, no new points of interest are expected to emerge
from this analysis.
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