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SEPARATION SCIENCE AND TECHNOLOGY, 17(15), PP. 1609-1622, 1982-83 

Chromatographic Kinetics and the Phenomenon 
of Tailing 

GEORGE H. WEISS 
PHYSICAL SCIENCES LABORATORY 
DIVISION OF COMPUTER RESEARCH & TECHNOLOGY 
NATIONAL INSTITUTES OF HEALTH 
BETHESDA, MARYLAND 20205 

Abstract 

This paper contains a reformulation of the kinetic equations that describe transport 
in a chromatographic column, to allow the possibility of describing adsorption at 
different types of sites. It is shown that in place of the partial differential equation 

dc a% ac 
at ax2 ax 

- v -  -- - D -  

that is the usual starting point for any analysis, one obtains a partial integro- 
differential equation. While only a formal solution to this equation is possible, the 
central limit theorem of probability guarantees that in a wide variety of cases the 
solution for an isolated peak will approach the Gaussian form, so that (*) is 
applicable. Next the conditions necessary to insure the appearance of tailing or 
permanent asymmetry in an isolated peak are considered. Two models that lead to 
tailing are considered. In the first there is a single adsorption phase, but the residence 
time distribution has an infinite variance. The second consists of a random 
distribution of first-order rate constants. 

INTRODUCTION 

Giddings and Eyring appear to have been the first to develop a stochastic 
or microscopic model for the kinetics of chromatrography (I), in contrast to a 
macroscopic model phrased in terms of a partial differential equation. They 
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1610 WEISS 

were interested in the elution profile for a column in which a molecule could 
be in one of two states: mobile or stationary with first-order kinetics 
describing the interchange between states. They showed that after a sufficient 
number of interchanges between the two states takes place, the elution profile 
becomes essentially a Gaussian when the initial loading is a pulse. They also 
considered a generalization in which two types of adsorption sites are 
allowed. This generalization is of interest as it has been proposed as a 
mechanism for producing tailing (2), i.e., when the two adsorption site types 
have very different desorption rates. It should be pointed out, however, that 
asymmetry produced in this way is necessarily transient in consequence of 
the central limit theorem of probability. Van Holde also discussed a two-state 
model in which there is no strictly adsorbed statle but in which the speed in 
the two states is different*(.?). From the beginning of these investigations, the 
generalization to a system with a single mobile state and n types of 
adsorption states has suggested itself. Symbolically the system can be 
represented as 

M X S 2  
s, 

This system with n = 2 was originally analyzed by Giddings and Eyring (1) 
as well as by Beynon et al. ( 4 )  and McQuarrie (5 ) .  The monograph by 
Giddings contains a formal analysis of systems which may be more 
complicated than the scheme of Eq. (1) (6). However, that analysis makes 
use of a quasi-equilibrium assumption and does not give a full kinetic 
treatment. 

In this paper I will make use of some recent developments in solid-state 
physics to develop transport equations for chromatographic systems starting 
from models on a microscopic level (7-11). A quantitative, if crude, measure 
of tailing will be introduced and evaluated for a variety of linear models, of 
which the scheme of Eq. (1) is typical. I will show that at sufficiently long 
times the asymmetry in a peak resulting from Eq. ( 1 )  must tend to zero. This 
is otherwise obvious since the central limit theorem of probability guarantees 
that an isolated peak will approach the Gaussian form at sufficiently long 
times (12). It should be noted, parenthetically, that this does not rule out 
transient tailing and is not, therefore, inconsistent with the suggestion of 
Keller and Giddings (2). It does say that in an infinitely long column all 
peaks based on the model of Eq. ( 1 )  will tend to the Gaussian. Two linear 
models will be described in the present paper that lead to peak asymmetry 
that increases with time. The first of these is that of a system with a single 
stationary or adsorption state in which the desorption kinetics reflect more 
complicated processes than can be described by a first-order reaction. The 
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CHROMATOGRAPHIC KINETICS 1611 

second is one in which the transitions between the mobile and adsorbed 
phases is assumed to be first order, but the rate constants for each transition 
are assumed to be randomly distributed. These models are only suggested as 
possibilities, and there may be many other possible linear models that will 
exhibit tailing. The possibility of tailing due to nonlinear isotherms (cf., for 
example, Ref. 13) will not be explored in this article. As a by-product of this 
investigation, I will derive a more general transport equation than has so far 
appeared in the literature of chromatographic processes. 

FUNDAMENTAL EQUATIONS 

In what follows I will consider the development of a concentration profile 
in the absence of boundaries. The observable concentration at x at time t will 
be denoted by p(x, t). If there are n types of adsorbed states, as in Eq. (l) ,  
then p(x, t) is the sum of concentrations in the mobile and adsorbed phases. 
Let c(x, t )  be the concentration at x of mobile molecules, and let ci(x, t) be the 
corresponding concentration in adsorbed phase i. By conservation of mass, 
one can write 

p(x .  t )  = c(x, t )  + &(x, t )  
i 

For simplicity I consider only the case of a column with spatially uniform 
properties. Let the matrix be characterized by a diffusion constant D ,  and 
assume that in the absence of a diffusive mechanism, molecules move 
through the column at speed v.  The transport equation resulting from these 
assumptions is 

To complete this set of equations we must describe kinetics of the transition 
between the mobile and adsorbed phases. If ki denotes the first-order rate 
constants for the transition M+Si and k,! denotes the rate constants for the 
reverse reaction, then we have 

dc i ld t  = kic - k,!ci, i = 1 ,  2, . . . , n (4)  

More complicated schemes for modeling these transitions will be discussed 
later. Equations (2)-(4) constitute one formulation of the generalized 
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1612 WEISS 

transport equations. It is not yet the most convenient starting point since the 
observable concentration is p(x, t), and it is therefore desireable to have a 
single equation for this quantity and no other. We will carry out the relevant 
transformation in a later paragraph, after discussing a more general 
description of transitions between the mobile and adsorbed phases. 

Let us suppose that the transition Si-M consists of several intermediate 
steps, or more generally that one a molecule is in S j  the desorption time is a 
random variable. Let the probability density for this random time be denoted 
by $;(t). When first-order kinetics apply, ICli(t) necessarily has the form 

qj( t )  = kf  exp ( -k i t )  ( 5  1 
Other more detailed pictures of the transition that involve intermediates lead 
to more complicated forms for $(t). However, let us simply retain (CIXt) in 
general form without immediately specifying its properties. For simplicity I 
will retain the assumption that the adsorption event M- Si can be described 
by first-order kinetics, although it is not' difficult to generalize this 
assumption. When a general form for ~ ) ~ ( t )  is retained, Eq. (4) is to be 
replaced by 

To see this we note that the rate of change of the concentration in Si  at time t 
is due either to influx from the mobile phase or due to molecules that entered 
S j  at time r and remained for a time t - z before desorbing. It can be verified 
that in the special case when Eq. ( 5 )  is substituted into Eq. (6), one finds Eq. 
(4). Equations (2) and (3)  remain valid whatever the form of qi(t). 

Since p(x, t )  is the measureable concentration, it is convenient to have a 
single equation in terms of this function. To derive this equation, we 
introduce Laplace transforms with respect to t: 

p*(x ,  s) = l m p ( x ,  t )  exp ( - - s t )  d t  

ct(x, s)  = l m c i ( x ,  t )  exp(--st) d t  
P-  

( 7 )  

+t(s)  = Jo exp ( - s t )  dt 

The Laplace transform of Eq. (6) is 

cT(x, s) = - ki ( 1  - $t(s))c*(x, s) 
S 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CHROMATOGRAPHIC KI NETlCS 1613 

so that the ct (x ,  s) can all be expressed in terms of @(x, s). The transform 
c*(x, s) can be expressed in terms of p*(x, s) by taking the transform of Eq. 
(2) and making use of Eq. (8). In this way we find that 

where 
--I 

Q * ( s )  = [ 1 + si = 1  ki( 1 - ,:(.))I 
The inverse transform of this function will be denoted by Q(t). Equation (9) 
is then equivalent to 

C ( X ,  t )  = p ( x ,  z)Q(t  - Z) d z  Lt 
by the convolution property of the Laplace transform. Hence the general 
form of the transport equation based on our microscopic model is 

Both the Giddings-Eyring and van Holde models assume that diffusion in 
the mobile phases is negligible, and set D = 0. In the former of these models 
there is only a single mobile phase, and the resulting form of @(s) is 

s + k‘ 
Q * ( s )  = ( 1  + 

The inverse transform, Q(t), is 

Q( t )  = 6( t )  - k exp (-( k + k ’ ) t )  (14) 

where 6(t) is the Dirac delta function. Consequently, Eq. (12) is, in detail, 

By differentiation with respect to t, this can also be transformed into the 
partial differential equation 
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a2P + ( k  + k , , d p _  + k'v- d P  = 0 a2P + v (16) axat at ax at2 

which is certainly a more complicated kinetic equation than one is 
accustomed to seeing in the context of chromatography. Nonetheless, 
probabilistic limit laws allow us to conclude that the Gaussian peak is 
reached as a limit of the solution (12). It should also be noted that when 
diffusion is negligible, one can solve the elution problem rather simply, since 
in this case the amount of molecules remaining in the column is 

rr 

where L is the length of the column. 

EVALUATION OF MOMENTS 

So far I have presented a formal theory. In general the theory, depending 
as it does on the function Q ( f )  which is hard to evaluate in detail, cannot be 
solved in complete generality. Nevertheless, useful information can be 
obtained from relatively simple properties of Q(t) that are readily calculable. 
In particular, this information resides in the moments of the observed 
concentration. Although p(x, t )  is not itself a probability density, the 
equivalent function 

r m  

can be so identified, since it is nonnegative, and normalized to 1, as can be 
verified by integrating Eq. (12) over all x. An analysis of the moments will 
enable us to study the spreading of an isolated peak as well as providing a 
measure of the asymmetry of the peak as a function of time. For simplicity I 
will consider only the case of pulse loading so that p(x, 0) = poS(x), and also 
assume that D = 0 so that diffusive transfer in the: mobile phase is negligible. 
A more general theory can be developed but the essential qualitative features 
are to be found in the simpler theory. 

The Laplace transform of Eq. (12) is, when D = 0, 

which is easily solved. The solution is 
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CHROMATOGRAPHIC KINETICS 1615 

from which the normalization property is readily inferred. Another quantity 
that can be found from Eq. (19) is the Laplace transform of the amount of 
retained molecules at time t. Equation (19) implies the result 

Both Eqs. (19) and (20) can be inverted exactly to yield p(x, t )  and R(t) for 
the Giddings-Eyring model, but such an inversion is not generally possible in 
any more complicated cases. It is therefore reasonable to seek measures of 
useful information about the peak that do not depend on an exact inversion. 
Such a measure is provided by the spatial moments r,(t) defined by 

r,(t) = x"p(x, t )  dx/po ( 2 1 )  l= 
The Laplace transform of these moments c h  be calculated from Eq. (1 9), 
and is found to be 

exactly. 
Since the inversion of @(s) is not readily accomplished, it would be 

impossible to give a complete transient analysis of the r,(t) without resort to 
numerical inversion of the Laplace transforms (14). Nonetheless Eq. (22) can 
yield useful information on the behavior of the m(t) at sufficiently long times. 
To see what is involved, consider the Giddings-Eyring model for which 
results can be calculated exactly. The mean peak position and the variance of 
the peak can be written in terms ofg(t) = 1 - exp ( - (k  + k')t) as 

vk' vk 
( k  + k')2 g( t )  

r l ( t )  = + k' t +  

2kk't 
g ( t )  k g(t) + k' ) - ( k  4- k' )3  

d(r) = r*(t )  - &t) = 
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1616 WEISS 

2k2 k2 
(g( t )  - ( k  + k’)te-(kfk’)‘‘ 2(t) (23)  ’ - ( k  + k r ) 4  

+ 
( k  + k ’ ) 4  

In the limit ( k  4- k’)t >> 1 ,  most terms in these expressions can be neglected 
and we find the simpler long-time results: 

The limit just stated, ( k  + k‘)t >> 1, can be given a physical interpretation. It 
says that the time must be large enough to insure that the number of 
interchanges between mobile and adsorbed phases is much greater than 
unity. When this condition holds, the methods of renewal theory can be used 
to show that in the stated limit peak shape will be very close to Gaussian 

In the case of multisite adsorption with a finite number of site types, it 
would be extremely difficult to write down the analogue of Eq. (23)  valid for 
all time, but it is possible rather directly to calculate the analogue of Eq. (24), 
the long time limit. I t  is somewhat more difficult to specify the time at which 
the Gaussian peak becomes a useful approximation, but we can approach 
this problem by calculating a function that measures the skewness of the 
distribution. This measure of asymmetry is used in statistics ( I 6 ) ,  and will be 
denoted by y(t). In our present notation it can be written 

(15). 

This quantity is exactly equal to zero for any symmetric peak and in 
particular for a Gaussian. The fundamental idea in what follows is to 
calculate the long time behavior of ri(t) from the small 1s I behavior of the 
@(s) ( I  7). In this way I will show that at sufficiently long times, y(t) goes like 
(T/t)”2, where T is a constant with the dimensions of time that can be 
calculated in terms of the rate constants. 

For the analysis one can assume that when I s /  is small, p ( s )  can be 
expanded as 

where the Qi are constants to be calculated from Eq. (10). When there are n 
first-order reactions as in Eq. ( l ) ,  the Q’s can be expressed in terms of 
quantities 
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CHROMATOGRAPHIC KJNETICS 1617 

where rj has the dimensions of (timey'. The first four of the Qi are: 

The next step in the analysis is to substitute Eq. (26)  into the expression for 
@(s) in Eq. ( 2 2 )  and collect terms like s - ~ ,  rn = 1, 2 ,  3 , .  . . , which 
correspond to terms t"-'/(rn - l)! in the long-time expansion of the rn(t). In 
this way we find 

We find, by using these expressions, that the variance associated with the 
peak is 

d ( t )  - 2QoQiv2t (30) 

and the long-time form for the skewness defined in Eq. ( 2 5 )  is 

which tends to zero as t increases indefinitely. Thus the shape of the peak 
approaches symmetry so that for the present model tailing is a transient 
phenomena. A mathematical argument based on the central limit theorem 
suffices to show that the resulting peak must in fact be Gaussian. 

KINETIC REQUIREMENTS FOR TAILING 

It has been shown that a distribution of a finite number of rate constants 
necessarily leads to the absence of tailing in the long-time limit, although the 
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1618 WElSS 

argument does not rule out transient asymmetry. Is there any model that 
leads to tailing that does not vanish as time increases? I will construct two 
models that have that property. Probably there are others. 

The motivation for the first model starts from the observation that it is no 
more than assumption that the kinetics of transitions between mobile and 
adsorbed phases can be described as being first order. Actual transitions may 
be much more complicated due to steric factors and to intermediate steps in 
the transition. Let us therefore consider a simple model with a single type of 
adsorbing site. Let us further retain the assumption that the transition M-S 
follows first-order kinetics. The reverse transition S-M will be assumed to 
reflect in its kinetics the different factors mentioned above. Because of these 
factors we will make the assumption that once adsorbed, a molecule can 
remain adsorbed for a long period. This property will be translated into an 
assumption about the long-time behavior of $(t). When kinetics are first 
order +(t) = k' exp (-k't) ,  and 

i.e., P ( s )  has a Taylor series around s = 0 which is equivalent to saying that 
all moments of residence in the adsorbed phase are finite. In  the present 
model we will assume that P ( s )  can be expanded around s = 0 as 

+*(s) = 1 - ps + as* + * * * ( 3 3 )  

in which 1 < Q < 2, and p and a are constants. The constant p is just the 
average residence time for a single sojourn in the: adsorbed phase. Equation 
(33) implies that the second moment, or variance of this residence time, is 
infinite although the average is finite. An example of a residence density with 
these properties is 

+ ( t )  = (L) 2 7rts 1/2 exp( - $) 
The corresponding transform is 

(34) 
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CHROMATOGRAPHIC KIN ETlCS 1619 

which is of the form shown in Eq. ( 3 3 ) ,  with a =  3 /2 .  
When Eq. ( 3 3 )  holds, Q"(s) can be expanded as 

where 

The combination of Eqs. ( 2 2 )  and ( 3 6 )  implies that at sufficiently large 
times, the moments of the peak take the form 

4 ~ ~ ~ ~ t ~ - ~  + . . .) 
r(4 - a) 

Thus at sufficiently long times [more precisely, when ( Q / Q l ) F '  >> 11, the 
average peak position will appear to increase linearly with time. However, 
the variance of the peak can be expressed in this approximation as 

When a = 2,  this reduces to the classical first-power dependence of the 
variance. Whenever the parameter a is less than 2 as is presently assumed, 
the variance grows at a faster rate than t. The expressions in Eq. ( 3 8 )  can 
also be used to calculate the skewness parameter defined in Eq. (25). In the 
present case the asymptotic result is 

to lowest order in t. Several features of this formula are of interest. First, the 
peak is skewed to the left because of the restriction that a < 2. Second, as 
time increases the skewness increases, and finally, as a -* 1 ,  the skewness 
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also increases. These qualitative properties are related to the infinite 
variance of the residence times that is a consequence of the assumption of 
Eq. (33). 

The results just described are derived for a single site model in which the 
residence times in the adsorbed phase have a finite mean but an infinite 
variance, and in which the Laplace transform of the residence time density 
has the property shown in Eq. (33). Similar results are obtainable from a 
model in which there are a multiplicity of sites with first-order kinetics (Eq. 
I), but in which the rate constants are assumed to be randomly distributed. 
To derive the relevant relations, one starts by assuming a joint density for the 
forward and backward rate constants,p(k, k'). That is to say,p(k, k') dk dk' 
is the probability that a forward (first-order) rate constant is between k and 
k f  dk, and a backward rate constant is between k' and k' f d k ' .  The 
continuous analogue of Eq. (9) with the assumption of random rate constants 
is 

which implies that the function Q*(s) appearing in Eq. (10) is 

(42) 
- kp(k, X : ' )  

Q*(s)=  ( 1  -I- l m L  -dkdk' 
s + k' 

The properties of Q*(s) for s-0 will therefore depend on those of the double 
integral 

Let me begin by assuming that U(0) is finite. It is just 

U(0) = Jm 0 J +p(k, k') d k  dk '  = (+) (44) 

i.e., it is equal to the average equilibrium constant which will be assumed to 
be finite. It is convenient to define the integral 

A k ' )  = J kp(k, k ' )  .dk (45) 
0 
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CHROMATOGRAPHIC KINETICS 1621 

so that 

( 4 6 )  - f lk ' )  dk' = -lm flus) du  
k'(s + k') u(u  + 1) 

U(s) - U(0)  = -s 

in which the second form of the integral follows from the first by the change 
of variables k' = su. We observe that when 1s I is small, the behavior of the 
integral depends on the behavior offlk') near the origin in k', since Ilk' 
diverges there. One can rcover an expansion equivalent to that in Eq. (33) by 
assuming that near k' = 0,flk') behaves likeflk') - A(k')B, where 0 < p < 1 
and A is a constant. Then it follows from an Abelian theorem for Laplace 
transforms (I 7) that 

IrA 

sin ( r r p )  
= L -  so ( 4 7 )  U(s) - U(0)  - -ASP 

for s - 0. Together with Eqs. (42) and (43), this result is exacly of the form 
of Eq. (36). We therefore see that the assumption of random rate constants 
together with a more specialized assumption on the density at long residence 
times (k' - 0) will produce tailing. No doubt one can find other forms of 
tailing behavior by varying the form offlk') or by assuming that residence in 
the mobile or stationary phases do not necessarily follow first-order kinetics. 
It is also clear that the equations that follow from a microscopic description 
of the chromatographic process are generally more complicated than the 
transport equation usually assumed to hold. However, the limit theorems of 
probability suffice to insure that the usually assumed transport equation is 
valid under a wide variety of circumstances. Finally, it is possible to 
generalize the equations developed here so as to include gradients and other 
inhomogeneities. However, no new points of interest are expected to emerge 
from this analysis. 
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